六年级负数的认识教案5篇

时间:2023-12-30 作者:dopmitopy

优秀的教案能够激发学生的学习兴趣和积极性,优秀的教案可以帮助我们找到适合自己的教学方式,路路文书网小编今天就为您带来了六年级负数的认识教案5篇,相信一定会对你有所帮助。

六年级负数的认识教案5篇

六年级负数的认识教案篇1

?教学内容

西师版小学数学第十一册第123-124页例1、例2,课堂活动第1、2题,练习二十五第1、3题。

?教学目标

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

?教学重点

负数的意义和负数的读法与写法。

?教学难点

理解0既不是正数,也不是负数。

?教学过程

一、激发兴趣,导入新课

游戏:《我变,我变,我变变变》

老师说一句话,请同学们说出一句和它意思相反的话。

二、创设情境、学习新知

1.教学例1。

(1)课件出示:中央电视台天气预报的一个场面:哈尔滨零下6摄氏度至3摄氏度。

你能用自己的方法来表示这两个温度吗?

学生思考后反馈,教师适时点拨、评价和引导。

教师小结:

(2)巩固练习。

同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

学生独立完成第123页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。

教师:同学们,你们知道吗?世界第一高峰珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。今天,老师带来了一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图,课本第124页上图的左部分,数字前没有符号)从图上你看懂了些什么?

引导学生交流:珠穆朗玛峰比海平面高8844.43米。

我们再来看新疆的吐鲁番盆地的海拔图。(课件演示吐鲁番盆地的'海拔情况,课本第124页上图的右部分,数字前没有符号)你又能从图上看懂些什么呢?

引导学生交流:吐鲁番盆地比海平面低155米。

学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)

教师追问:你是怎么想到用这种方法来记录的呢?

教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平面低155米。

(2)巩固练习:课本第124页试一试。

教师巡视,集体订正。

3.小组讨论,归纳正数和负数。

教师:通过刚才的学习,我们收集到了一些数据,(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?

学生交流、讨论。

指出:因为+8844.43米也可以写成8844.43米,所以有正号和没正号都可以归于一类。

提出疑问:0到底归于哪一类?引导学生争论,各自发表意见。

小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数叫做负数;而0既不是正数,也不是负数。(板书)

通常正号可以省略不写,负号可以不写吗? 为什么?

三、巩固练习,深化认识

1.课堂活动:1、2题。

①读一读,议一议。

学生齐读,巩固负数的读法。

②根据题中的信息,说一说三个班的答题情况。

学生讨论交流,并说出理由。

2.练习二十五:1、3题。

独立练习,反馈交流。

四、联系生活,拓展运用

说一说:生活中哪些地方还会用到负数。

六年级负数的认识教案篇2

【教学内容】

西师大版《义务教育课程标准实验教科书数学》六年级(上册)第七单元《负数的初步认识》第一课时。【教学目标】

1.在熟悉的生活情境中理解负数意义;会读写负数;0既不是正数,也不是负数,0是正负数的分界点。

2.经历正负数表示一些日常生活中的量的过程,增强符号意识,体验数学的应用价值。

3.在认识负数和应用负数解决问题的过程中获得成功的体验。【教学重点】在熟悉的生活情境中理解负数意义 【教学难点】0是正负数的分界点

【教学过程】

一、质疑导入,揭示课题

1、游戏规则是:老师说一句话,你们要快速说出与它意思相反的话。比比看,谁反应最快。电梯上升5层;我在银行存入1000元钱;零上10摄氏度;比海平面高800米。

2、谈话引入:昨天,王老师带着50元钱到楼下小卖部买东西,结果一算账要80元,还差30元。老板是熟人,先记账。东西让我提走。回家的路上我就在想我现在究竟有都少钱呢?请同学们帮帮老师。(生回答)今天我们来学习负数的初步认识,(板书课题)就可以解决这个问题了。

二、联系生活,学习新知

(一)例1以温度初识负数

1、试一试(练习卡)

零上8摄氏度,记作()℃,零下8摄氏度,记作()℃。(生答,并说为什么要这样表示)

2、以温度计为实例初步认识负数(课件)

(1)出示温度计,让学生观察,以哪个温度为分界点?(0摄氏度)师介绍:常态下水结冰时的温度是0摄氏度,水沸腾时的`温度是100摄氏度。0摄氏度是零上温度和零下温度的分界点,(板书0、.)比0摄氏度高的温度用带“+”号的数表示(板书+)。通常+可以省略不写(板书括号)。比0摄氏度低的温度用带“—”号的数表示(板书 —)20℃、5℃,—20℃、—35 ℃(生再说几个温度)(2)读一读。(包括试一试)。

(3)填一填。把刚才读到的温度填在表中(展台出示表格),介绍填法(已带单位只填数)。(生填))(4)练习(课件)

3、师:我们把0摄氏度作为零上温度和零下温度的分界点,用带+和—的数表示出一对相反的量。(板书相反的量)

(二)例2以海拔加深对负数的认识。

1、出示例2(课件)观察,你了解到哪些信息?

2、根据学生的回答,得出海平面的高度为0米,是分界线,以上用带+数表示,以下用带—数表示,又表示出了一对相反的量。

3、读数,填数

4、练习(课件)填在表中(生答)

5、说意义。太平洋最深处海拔高度是—米,青海省祁连山海拔高度是4000米。

(三)认识正负数

1、师小结正负数的概念,学生议一议,0呢?

2、交流汇报。

师提示

(一)这样的正负数很多,打上省略号。

(二)+可以省略,而—不能省略。师说几个正负数(分数、小数)让生判断。

(三)0是分界点,既不是正数,也不是负数。

3、把表横放,引入数轴的初步感知。

4、师:我们以前学过的数,除了0以外,其他的都是什么数?(正数)

三、课堂练习(课件)(一)基础练习

1、读一读,填一填。

正数有哪些,负数有哪些。剩下的0呢?(强调既不是正数,也不是负数)

2、判断

提醒0摄氏度以下的温度负得越多越冷。

(二)提升练习

1、智力抢答。

提示已经答了三道题。

2、读一读,议一议。(小组讨论)(三)拓展练习

1、照样子说一说(练习卡)

2、解决开始时提出的问题。老师现在有多少钱?(—30元)。我提着东西回家,家在11楼,电梯应该按哪个键?刚进电梯,又突然想起还要接孩子放学,要到地下一楼车库去开车,又应该按哪个键呢?

四、课堂小结

今天你有什么收获?

五、课外作业

你知道最早使用负数的是哪个国家吗?上网或看书了解更多有关负数的知识,下节课我们再来一起交流吧。

六年级负数的认识教案篇3

认识负数

教学目标:

1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

教学重点:初步认识正数和负数以及读法和写法。

教学难点:理解0既不是正数,也不是负数。

教学具准备:多媒体课件、温度计、练习纸、卡片等。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

说明什么是相反意义的量(意义正好相反)

3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

b、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

负号能不能省略不写?为什么?

② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法(p4第2题)

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

2、学生交流、讨论。

3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

4、小结:什么是正数、负数?

师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0.5、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

五、联系生活,巩固练习

1.练习一第2、3题

2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 。

3.讨论生活中的正数和负数

(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)

(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

六、课堂小结

这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

第一课时教学反思

经过一学期“生本对话”课题研究,全班已基本形成课前自学的习惯。在此基础上,本学期提高了对预习的要求(不仅要完成课后“做一做”,而且要尝试提出有思考价值的数学问题),也想逐步改变教学方式,以学生的问题带动全课的教学推进。

今天,学生在例1环节只提出了教材中的一个问题“16℃和—16℃的意义相同吗”,并追问了“为什么”,再无其它疑问。对于“为什么”也回答得很清晰,看来生活积淀为负数的学习打好了坚实的基础。在此,我补充了认识温度计上的温度这一知识点。主要出于以下两点考虑:一是为第二课时数轴上表示正负数做准备;二是联系生活实际,提升学生的数学应用意识。我所绘制的温度计是以5℃为一个单位长度,在练习中发现部分学生读或指温度时有错误,主要是—16℃与—14℃易混淆。在此引导学生辨析,并教给他们方法。

在例2中学生质疑的问题明显增加。有(1)“正数、负数的意义是什么”;(2)“正数、负数的区别是什么”;(3)“为什么0既不是正数,也不是负数”;(4)“算式中的会有负数吗?如果有,它和减号如何区分?”其中前三个问题是本节课内容,后一个问题涉及到初中的代数知识。学生们答疑的水平较高。如第一问,回答问题的学生不是像教材那样用举例子的方式来描述正、负数的意义,而是用抽象概括的语言总结其含义。“大于0的数是正数,小于0的数是负数”,多棒呀,看来学生的能力不可小瞧!第三个问题是由我解释,从而帮助学生了解其原因。最后一个问题为帮助学生更好实现中小衔接,我也进行了补充介绍,提升他们的学习兴趣。

但学生的此次质疑还不够全面,主要表现在对读法较忽视。为此,我补充提问了“+”号可以省略吗?省略后怎样读?它还是正数吗?“—”号可以省略吗?为什么?怎样读?强调读法及正负数的表示方法。

最后,根据本班学情,我补充了下列练习,提升综合应用能力。下面记录的是3位学生的期末数学考试成绩。以他们的平均成绩为标准,把平均分记为0分,超过平均分记为正、不足的分数为负,在表格中用正、负数表示他们的分数。

六年级负数的认识教案篇4

教学内容:

教材第3-4页的例3、例4,以及“试一试”、“练一练”,练习一第5-8题。

教学目标:

1.能在盈与亏、收与支、升与降、增与减及相反方向运动等现实的情境中准确地应用负数,进一步理解负数的意义。

2.通过用正数和负数表示一些具有相反意义的量,体会数学的应用价值。

教学重点:

在现实情境中应用负数,体验负数。

教学难点:

用正、负数表示相反方向的量,体验负数的意义。

教学过程:

一、自主准备

你知道生活中有哪些相反意义的量?试着举例用正数或负数来表示。

二、自主探究

1.阅读课本第3页的例3。从表中你能知道些什么?(大声地读一读,并说一说表中的数所表示的意义)

2.从例3的学习中,你知道( )和( )是一对具有相反意义的量,通常情况下,怎样用正数和负数来表示?

3.填写课本第3页的“试一试”。

4.阅读课本第3页的例4。思考:如何用图来表达学校、邮局、公园之间的`相对位置?(在下面画一画)

5.如果把向东走2千米记作+2千米,那么向西走2千米可以记作什么?

6.在直线上用点表示邮局和公园的位置

看了上图,你有什么发现?

三、自主应用

1.电梯上升15米记作+15米,下降10米记作( )米,-20米表示电梯( )米。

2.公交车上的售票员将下车3人记作-3人,上车4人记作( )人,-5人表示( )人。

3.知识竞赛抢答的评分规定:答对一题得10分,记作+10分;答错一题扣10分,应记作( )分。王明答对12题,答错3题,他得了( )分。

四、自主质疑

你认为本节课应学会什么?你还有什么疑问?

六年级负数的认识教案篇5

教材分析

在学生认识了自然数、分数和小数的基础上认识正、负数,所以正、负数的认识是学生数概念的进一步拓展,也是学生学习有理数的启蒙阶段。

学情分析

之前的数概念学习,学生较多的是在具象意义上认数,分数虽然是在抽象意义上认数,但借助整体和部分关系,学生理解整体与部分关系用分数表示相对还比较容易把握,而正、负数的认识则属于更高的抽象意义上的认知,所以学生存在一定的学习困难。

教学目标

1、经历正、负数的产生过程,感受数范围不断形成和扩张的生成发展过程。

2、结合现实生活理解正、负数的意义,会用0表示参照标准,理解0既不是正数也不是负数;会用正、负数表示相反意义的量;掌握正、负数的读写法。

3、结合实际情境经历数轴的产生过程,在数轴上理解正数比0大、负数比0小。

教学重点

结合现实生活理解正、负数的意义,会用0表示参照标准,理解0既不是正数也不是负数;会用正、负数表示相反意义的量。

教学难点

理解0的含义。

教学方法

动手操作、小组合作学习

教学过程

设计思路

一、联系生活、激发兴趣

材料感知,聚类分析,发现生活中的参照标准及其相反意义的量。

这些都是具有相反意义的数量。以第①个为例,相对“始发站一个乘客也没有”为标准进行比较,相反意义的量是“上来8名”和“下去6名”。你能像这样说一说其它情境中都是相对什么标准来说的`,两个数量有什么联系吗?

二、联系生活并用正、负数表示。

开始同学们阅读了一些相反意义的量,你能用“0”来表示参照标准,用正、负数来表示参照标准两端相反意义的量吗?

以前计数时0表示没有,测量时0表示起点,今天我们学习正负数中0又用来表示参照标准,0的作用真大啊。

珠穆朗玛峰高于海平面的海拔高度约为8844.43米,吐鲁番盆地低于海平面约155米,这里以海平面为基准,是不是也产生了相反意义的量?怎样用正、负数来表示?

暑假里绵阳的最高气温达到了38℃,和这么热的高温恰恰相反,珠穆朗玛峰峰顶的温度由于海拔高度的关系却只有-38℃,-38℃在-20℃的上面还是下面,比-20℃高还是低?

你还能列举出生活中用正、负数来表示的例子吗?举例时想一想我们可以把什么看作0,什么为正,什么为负?

小结:生活中凡是相对某一参照标准具有相反意义的量都可以用正、负数来表示。

三、正、负数的应用

1、结合班级中的正、负数生成数轴。

师:同学们找找,我们班级里有没有可以用正、负数表示的地方呢?

师:如果以“o”同学为参照标准,用0表示,约定右边为正,左边为负,那同学们的位置是不是也产生了正、负数?右边a同学的位置可以用什么数表示?左边b同学的位置呢?

小结:从0向右位置为+1,+2,+3的同学离0越来越远,表示的数就越来越大。相反,从0向左位置为-1,-2,-3的同学离0越来越远,表示的数就越来越小。

师:如果仍以“o”同学为参照标准,用0表示,约定向前为正,向后为负,那前边c同学的位置可以用什么数表示?后边d同学的位置呢?

师:我们再以“o”同学为参照标准,用0表示,约定斜前为正,斜后为负,e、f同学的位置用什么数表示?

小结:我们把刚才横行、竖列、斜行的同学们的位置分别看做一条直线,参照标准用0表示,也就是数轴的“原点”;规定向东、向北、向右、向前为正,也就是数轴的正方向,画上箭头;那么向西、向南、向左、向后就可以用负数来表示,每个人的位置都可以在直线上用正、负数表示,每两个同学间的距离一样,这个距离也就是数轴的单位长度。

师:比较一下,相对0而言,是-2更接近于0,还是+2更接近于0?

四、总结:正数和负数在0的两侧,它们具有相反关系,这一特点也在生活中被广泛运用,同学们课后可以再去找一找,体会一下。

感受数学来源于生活,感受负数的意义。

体会负数表示相反意义的量。

从直观形象的温度计出发,帮助学生理解。

结合数轴、直观形象的理解负数的意义。

在总结中提升,加深对知识的理解和应用。