等差数列教案7篇

时间:2024-04-09 作者:Kris

一份实用的教案可以帮助我们更好地规划和安排学习活动,提高学生的学习动力和参与度,一份优质的教案能够帮助我们更好地评估学生的学习情况和学习成果,为个别辅导和差异化教学提供依据,路路文书网小编今天就为您带来了等差数列教案7篇,相信一定会对你有所帮助。

等差数列教案7篇

等差数列教案篇1

【教学目标】

1. 知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2.过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的.观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】

①等差数列的概念;

②等差数列的通项公式

【教学难点】

①理解等差数列“等差”的特点及通项公式的含义;

②等差数列的通项公式的推导过程.

【学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

【设计思路】

1.教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

2.学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

【教学过程】

一:创设情境,引入新课

1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

二:观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

三:举一反三,巩固定义

1.判定下列数列是否为等差数列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .

(设计意图:强化学生对等差数列“等差”特征的理解和应用).

2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四:利用定义,导出通项

1.已知等差数列:8,5,2,…,求第200项?

2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

五:应用通项,解决问题

1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?

2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差数列 3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况.

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

六:反馈练习:教材13页练习1

七:归纳总结:

1.一个定义:

等差数列的定义及定义表达式

2.一个公式:

等差数列的通项公式

3.二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

【设计反思】

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

等差数列教案篇2

教学目标

1.明确等差数列的定义.

2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3.培养学生观察、归纳能力.

教学重点

1. 等差数列的概念;

2. 等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教学方法

启发式数学

教具准备

投影片1张(内容见下面)

教学过程

(i)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:积极思考,找上述数列共同特点。

对于数列① (1≤n≤6); (2≤n≤6)

对于数列② -2n(n≥1)

(n≥2)

对于数列③

(n≥1)

(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:

即:

即:

……

由此可得:

师:看来,若已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项 。

如数列① (1≤n≤6)

数列②: (n≥1)

数列③:

(n≥1)

由上述关系还可得:

即:

则: =

如:

三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由

n=20,得

(2)由

得数列通项公式为:

由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本p118练习3

(书面练习)课本p117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:①等差数列定义。

即 (n≥2)

②等差数列通项公式 (n≥1)

推导出公式:

(v)课后作业

一、课本p118习题3.2 1,2

二、1.预习内容:课本p116例2—p117例4

2.预习提纲:①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

板书设计

课题

一、定义

1.(n≥2)

一、通项公式

2.公式推导过程

例题

教学后记

等差数列教案篇3

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的'推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

二、教法分析

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(n﹡;解析式)

通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①

3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1-an=d (n≥1)

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1. 9 ,8,7,6,5,4,……;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一个数列公差0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

等差数列教案篇4

一、教材分析

1、教学目标:

a.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;

b.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c 通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

2、教学重点和难点

①等差数列的概念。

②等差数列的通项公式的。推导过程及应用。用不完全归纳法推导等差数列的通项公式。

二、教法分析

采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1、全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是c)分别是

21,22,23,24,25,

2、某剧场前10排的座位数分别是:

38,40,42,44,46,48,50,52,54,56。

3.某长跑运动员7天里每天的训练量(单位:)是:

7500,8000,8500,9000,9500,10000,10500。

共同特点:

从第2项起,每一项与前一项的差都等于同一个常数。

(二) 新课探究

1、给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③公差可以是正数、负数,也可以是0。

2、推导等差数列的通项公式

若等差数列{an }的首项是 ,公差是d, 则据其定义可得:

- =d 即: = +d

– =d 即: = +d = +2d

– =d 即: = +d = +3d

进而归纳出等差数列的通项公式:

= +(n-1)d

此时指出:

这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

– =d

– =d

– =d

– =d

将这(n-1)个等式左右两边分别相加,就可以得到 – = (n-1) d即 = +(n-1) d

当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。

接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n-1)×2 , 即 =2n-1 以此来巩固等差数列通项公式运用

(三)应用举例

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

例1 (1)求等差数列8,5,2,…的第20项;

(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

第二问实际上是求正整数解的问题,而关键是求出数列的通项公式

例2 在等差数列{an}中,已知 =10, =31,求首项 与公差d。

在前面例1的基础上将例2当作练习作为对通项公式的巩固

例3 梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

(四)反馈练习

1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

2、若数列{ } 是等差数列,若 = ,(为常数)试证明:数列{ }是等差数列

此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

(五)归纳小结 (由学生总结这节课的收获)

1、等差数列的概念及数学表达式.

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2、等差数列的通项公式 = +(n-1) d会知三求??

(六) 布置作业

必做题:课本p114 习题3.2第2,6 题

选做题:已知等差数列{ }的首项 = -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

四、板书设计

在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

教学目的:

1.明确等差数列的定义,掌握等差数列的通项公式。

2.会解决知道中的三个,求另外一个的问题。

教学重点:等差数列的概念,等差数列的通项公式。

教学难点:等差数列的性质

教学过程:

一、复习引入:(课件第一页)

二、讲解新课:

1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。

(课件第二页)

⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;

⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。

2.等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: (课件第二页) 第二通项公式 (课件第二页)

三、例题讲解

例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

例2 在等差数列 中,已知 , ,求 , ,

例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。

小结:

①这就是第二通项公式的变形,

②几何特征,直线的斜率

例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3)

例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)

分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。

注:

①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,…

②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q.

③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式

④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。

例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数。

四、练习:

1、(1)求等差数列3,7,11,……的第4项与第10项。

(2)求等差数列10,8,6,……的第20项。

(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。

(4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由。

2、在等差数列{ }中,

(1)已知 =10, =19,求 与d;

五、课后作业:

习题3.2 1(2),(4) 2.(2), 3, 4, 5, 6 。 8. 9.

?教学目标】

1.知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2、过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3、情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

?教学重点】

①等差数列的概念;

②等差数列的通项公式

?教学难点】

①理解等差数列“等差”的特点及通项公式的含义;

②等差数列的通项公式的推导过程.

?学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

?设计思路】

1.教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2.学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

【教学过程】

一:创设情境,引入新课

1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力。

二:观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。)

三:举一反三,巩固定义

1、判定下列数列是否为等差数列?若是,指出公差d。

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题。

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 。

(设计意图:强化学生对等差数列“等差”特征的理解和应用)。

2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四:利用定义,导出通项

1、已知等差数列:8,5,2,…,求第200项?

2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法。

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力。学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。鼓励学生自主解答,培养学生运算能力)

五:应用通项,解决问题

1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?

2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an。

3求等差数列 3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况。

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系。初步认识“基本量法”求解等差数列问题。)

六:反馈练习:教材13页练习1

七:归纳总结:

1、一个定义:

等差数列的定义及定义表达式

2、一个公式:

等差数列的通项公式

3、二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。)

【设计反思】

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。

等差数列教案篇5

“等差数列”教学设计

一、教学内容分析

等差数列是《普通高中课程标准实验教科书?数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,?数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

二、教学目标

1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。

2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。

3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

三、教学重难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:

①理解等差数列“等差”的特点及通项公式的含义。

②理解等差数列是一种函数模型。

四、学习者分析

普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识经验已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

五、教学策略选择与设计

结合本节课的特点,我设计了从教法、学法两种方法对等差数列的通项公式进行推导,让学生更好的理解。通过引入实例来启发学生,挺高学生的学习兴趣,是学生更加形象、愉快的去学习这堂课。下面是我教学设计:

教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

六、教学资源与工具设计

(一)学习环境:多媒体教室

(二)用到的资源:

1 查找有关等差数列的实例

2 写出上课要提到的问题

3 制作相关ppt课件

七、教学过程

教学环境 教学内容与

教师活动 学生活动 设计意图或依据 情境导入

在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更 给,问各得金几何,及未到三人复应得金几何“。 这个问题该怎样解决呢?

由学生观察分析并得出答案: 在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,?

水库的管理人员为了保证优质鱼 类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位 为18cm,自然放水每天水位降低,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,,13,,8,

思考:同学们观察一下上面的这两个数列: 0,5,10,15,20, ① 18,,13,,8, ② 看这些数列有什么共同特点呢?

倾听和观察分析,发表各自的意见。

课堂引入,引向课题 探索与归纳

对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,。

提问:如果在a与b中间插入一个数a,使a,a,b成等差数列数列,那么a应满足什么条件?

由三个数a,a,b组成的等差数列可以看成最简单的等差数列,这时,a叫做a与b

的等差中项。

不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13?中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,

从而可得到在一等差数列中,若m+n=p+q则

等差数列教案篇6

等差数列求和

教学目标

1.掌握等差数列前

项和的公式,并能运用公式解决简单的问题.项和的定义,了解逆项相加的原理,理解等差数列前

项和公式(1)了解等差数列前

推导的过程,记忆公式的两种形式;

(2)用方程思想认识等差数列前 公式与前

项和的公式,利用公式求 ;等差数列通项项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

(3)会利用等差数列通项公式与前 项和的公式研究 的最值.2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.教学建议(1)知识结构

本节内容是等差数列前 前

项和公式的推导和应用,首先通过具体的例子给出了求等差数列项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.(2)重点、难点分析

教学重点是等差数列前

项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前 变用公式、前 项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、项和公式与通项公式的综合运用体现了方程(组)思想.

高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.(3)教法建议

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前 式综合运用.②前 项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.项和公

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.④补充等差数列前

项和的最大值、最小值问题.项和公式.⑤用梯形面积公式记忆等差数列前

等差数列的前教学目标

1.通过教学使学生理解等差数列的前 项和公式教学设计示例

项和公式的推导过程,并能用公式解决简单的问题.2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.教学重点,难点 教学重点是等差数列的前 教学用具

实物投影仪,多媒体软件,电脑.教学方法

讲授法.项和公式的推导和应用,难点是获得推导公式的思路.教学过程 一.新课引入

提出问题:一个堆放铅笔的v形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个v形架上共放着多少支铅笔?

问题就是(板书)“ ”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,?,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.我们希望求一般的等差数列的和,高斯算法对我们有何启发? 二.讲解新课(板书)等差数列前 1.公式推导(板书)项和公式

问题(幻灯片):设等差数列 的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.思路一:运用基本量思想,将各项用 和 表示,得,有以下等式,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进行不下去了.思路二: 上面的等式其实就是,为回避个数问题,做一个改写,两

式左右分别相加,得,于是有:.这就是倒序相加法.思路三:受思路二的启发,重新调整思路一,可得,于是

.于是得到了两个公式(投影片): 和.2.公式记忆

用梯形面积公式记忆等差数列前 等差数列前 项和的两个公式.项和公式,这里对图形进行了割、补两种处理,对应??

3.公式的应用

公式中含有四个量,运用方程的思想,知三求一.例1.求和:(1);

(2)(结果用 表示)

解题的关键是数清项数,小结数项数的方法.例2.等差数列 中前多少项的和是9900?

本题实质是反用公式,解一个关于 三.小结

1.推导等差数列前的一元二次函数,注意得到的项数 必须是正整数.项和公式的思路;

2.公式的应用中的数学思想.四.板书设计

等差数列教案篇7

数学教案-等差数列_高一数学教案_模板

§等差数列

目的:1.要求学生掌握等差数列的概念

2.等差数列的通项公式,并能用来解决有关问题。

重点:1.要证明数列{an}为等差数列,只要证明an+1-an等于常数即可(这里n≥1,且n∈n*)2.等差数列的通项公式:an=a1+(n-1)d(n≥1,且n∈n*).3.等到差中项:若a、a、b成等差数列,则a叫做a、b的等差中项,且

难点:等差数列“等差”的特点。公差是每一项(从第2项起)与它的前一项的关绝对不能把被减数与减数弄颠倒。

等差数列通项公式的含义。等差数列的通项公式由它的首项和公差所完全确定。换句话说,等差数列的首项和公差已知,那么,这个等差数列就确定了。过程:

一、引导观察数列:4,5,6,7,8,9,10,…… 3,0,-3,-6,……,,…… 12,9,6,3,……

特点:从第二项起,每一项与它的前一项的差是常数—“等差” 二、得出等差数列的定义:(见p115)

注意:从第二项起,后一项减去前一项的差等于同一个常数。1.名称:ap 首项

公差

2.若

则该数列为常数列

3.寻求等差数列的通项公式:

由此归纳为

当 时

(成立)

注意: 1° 等差数列的通项公式是关于 的一次函数

2° 如果通项公式是关于 的一次函数,则该数列成ap 证明:若

它是以 为首项,为公差的ap。

3° 公式中若

则数列递增,则数列递减

4° 图象: 一条直线上的一群孤立点

三、例题: 注意在 中,,四数中已知三个可以

求出另一个。例1(p115例一)

例2(p116例二)注意:该题用方程组求参数 例3(p116例三)此题可以看成应用题 四、关于等差中项: 如果 成ap 则

证明:设公差为,则

例4 《教学与测试》p77 例一:在-1与7之间顺次插入三个数 使这五个数成ap,求此数列。

解一:∵ ∴ 是-1与7 的等差中项 ∴

又是-1与3的等差中项 ∴

又是1与7的等差中项 ∴

解二:设

∴所求的数列为-1,1,3,5,7 五、判断一个数列是否成等差数列的常用方法

1.定义法:即证明

例5、已知数列 的前 项和,求证数列 成等差数列,并求其首项、公差、通项公式。

解:

当 时

时 亦满足 ∴

首项

∴ 成ap且公差为6 2.中项法: 即利用中项公式,若 则 成ap。

例6 已知,成ap,求证,也成ap。

证明: ∵,成ap

∴ 化简得:

=

∴,也成ap 3.通项公式法:利用等差数列得通项公式是关于 的一次函数这一性质。

例7 设数列 其前 项和,问这个数列成ap吗?

解: 时 时

∴ 数列 不成ap 但从第2项起成ap。

五、小结:等差数列的定义、通项公式、等差中项、等差数列的证明方法 六、作业: p118习题3.2 1-9 七、练习:

1.已知等差数列{an},(1)an=2n+3,求a1和d(2)a5=20,a20=-35,写出数列的通项公式及在数列{an}中,an=3n-1,试用定义证明{an}是等差数列,并求出其公差。

注:不能只计算a2-a1、a3-a2、a4-a3、等几项等于常数就下结论为等差数列。

3.在1和101中间插入三个数,使它们和这两个数组成等差数列,求插入的三个数。

4.在两个等差数列2,5,8,…与2,7,12,…中,求1到200内相同项的个数。

分析:本题可采用两种方法来解。

(1)用不定方程的求解方法来解。关键要从两个不同的等差数列出发,根据 相同项,建立等式,结合整除性,寻找出相同项的通项。

(2)用等差数列的性质来求解。关键要抓住:两个等差数列的相同项按原来的前后次序仍组成一个等差数列,且公差为原来两个公差的最小公倍数。

5.在数列{an}中, a1=1,an= ,(n≥2),其中sn=a1+a2+…+an.证明数列是等 差数列,并求sn。

分析:只要证明(n≥2)为一个常数,只需将递推公式中的an转化 为sn-sn-1后再变形,便可达到目的。

6.已知数列{an}中,an-an-1=2(n≥2), 且a1=1,则这个数列的第10项为()

a 18 b 19 c 20 d21 7.已知等差数列{an}的前三项为a-1,a+1,2a+3,则此数列的公式为()

a 2n-5 b 2n+1 c 2n-3 d 2n-1 8.已知m、p为常数,设命题甲:a、b、c成等差数列;命题乙:ma+p、mb+p、mc+p 成等差数列,那么甲是乙的()

a 充分而不必要条件 b 必要而不充分条件

c 充要条件 d既不必要也不充分条件 9.(1)若等差数列{an}满足a5=b,a10=c(b≠c),则a15=

(2)首项为-12的等差数列从第8项开始为正数,则公差d的取值范围是

(3)在正整数100至500之间能被11整除的整数的个数是

10.已知a5=11,a8=5,求等差数列{an}的通项公式。11.设数列{an}的前n项sn=n2+2n+4(n∈n*)(1)写出这个数列的前三项a1,a2,a3;(2)证明:除去首项后所成的数列a2,a3,a4…是等差数列。

12.已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?

13.若关于x的方程x2-x+a=0和x2-x+b=0(a≠b)的4个根可以组成首项为 的等到差数列,求a+b 的值。

教学目标

1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点

重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具

投影仪,多媒体软件,电脑.教学方法

讨论、谈话法.教学过程 一、提出问题

给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,,-,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列.(这里播放变形虫分裂的多媒体软件的第一步)等比数列(板书)

1.等比数列的定义(板书)

根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:

2.对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即 ;

问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0.用数学式子表示等比数列的定义.是等比数列

①.在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列

?为什么不能?

式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.3.等比数列的通项公式(板书)

问题:用 和 表示第 项.①不完全归纳法

.②叠乘法,…,这 个式子相乘得,所以.(板书)(1)等比数列的通项公式

得出通项公式后,让学生思考如何认识通项公式.(板书)(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已).这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.三、小结

1.本节课研究了等比数列的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.四、作业(略)五、板书设计

三.等比数列 1.等比数列的定义 2.对定义的认识

3.等比数列的通项公式 (1)公式

(2)对公式的认识

教学目标

(1)掌握 与()型的绝对值不等式的解法.

(2)掌握 与()型的绝对值不等式的解法.

(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;

(4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;

教学重点:

型的不等式的解法;

教学难点:利用绝对值的意义分析、解决问题. 教学过程设计 教师活动 学生活动 设计意图 一、导入新课

?提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明? 【概括】

口答

绝对值的概念是解 与()型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫. 二、新课

?导入】2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数是谁?在数轴上表示出来.

?讲述】求绝对值等于2的数可以用方程 来表示,这样的方程叫做绝对值方程.显然,它的解有二个,一个是2,另一个是-2. 【提问】如何解绝对值方程 .

?设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示? 【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式 的解集就是表示数轴上到原点的距离小于2的点的集合.

?设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?

?质疑】 的解集有几部分?为什么 也是它的解集?

?讲述】 这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以 是 解集的一部分.在解 时容易出现只求出 这部分解集,而丢掉 这部解集的错误. 【练习】解下列不等式:(1);(2)

?设问】如果在 中的,也就是 怎样解?

?点拨】可以把 看成一个整体,也就是把 看成,按照 的解法来解.

所以,原不等式的解集是

?设问】如果 中的 是,也就是 怎样解?

?点拨】可以把 看成一个整体,也就是把 看成,按照 的解法来解.,或,由 得

由 得

所以,原不等式的解集是

口答.画出数轴后在数轴上表示绝对值等于2的数. 画出数轴,思考答案

不等式 的解集表示为

画出数轴 思考答案

不等式 的解集为

或表示为,或

笔答(1)

(2),或

笔答 笔答

根据绝对值的意义自然引出绝对值方程()的解法.

由浅入深,循序渐进,在()型绝对值方程的基础上引出()型绝对值方程的解法. 针对解()绝对值不等式学生常出现的情况,运用数轴质疑、解惑. 落实会正确解出 与()绝对值不等式的教学目标. 在将 看成一个整体的关键处点拨、启发,使学生主动地进行练习.

继续强化将 看成一个整体继续强化解 不等式时不要犯丢掉 这部分解的错误. 三、课堂练习解下列不等式:(1);(2)

笔答(1);(2)

检查教学目标落实情况. 四、小结的解集是 ; 的解集是

解 绝对值不等式注意不要丢掉 这部分解集.

或 型的绝对值不等式,若把 看成一个整体一个字母,就可以归结为 或 型绝对值不等式的解法. 五、作业

1.阅读课本 含绝对值不等式解法. 2.习题 2、3、4 课堂教学设计说明

1.抓住解 型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础.

2.在解 与 绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的.

3.针对学生解()绝对值不等式容易出现丢掉 这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力.

(第二课时)一、教学目标

1.掌握平面向量的数量积的运算律,并能运用运算律解决有关问题;

2.掌握向量垂直的充要条件,根据两个向量的数量积为零证明两个向量垂直;由两个向量垂直确定参数的值;

3.了解用平面向量数量积可以处理有关长度、角度和垂直的问题;

4.通过平面向量的数量积的重要性质及运算律猜想与证明,培养学生的探索精神和严谨的科学态度以及实际动手能力;

5.通过平面向量的数量积的概念,几何意义,性质及运算律的应用,培养学生的应用意识.

二、教学重点平面向量的数量积运算律,向量垂直的条件;

教学难点平面向量的数量积的运算律,以及平面向量的数量积的应用.三、教学具准备

投影仪 四、教学过程

1.设置情境

上节课,我们已经给出了数量积的定义,指出了它的(5)条属性,本节课将研究数量积作为一种运算,它还满足哪些运算律?

2.探索研究

(1)师:什么叫做两个向量的数量积?

生:(与 向量的数量积等式 的模 与 在 的方向上的投影 的乘积)

师:向量的数量积有哪些性质?

生:(1)

(2)

(3)

(4)

(5)

(6)

师:向量的数量积满足哪些运算律?

生(由学生验证得出)

交换律:

分配律:

师:这个式子 成立吗?(由学生自己验证)

生:,因为 表示一个与 共线的向量,而 表示一个与 共线的向量,而 与 一般并不共线,所以,向量的内积不存在结合律。

(2)例题分析

?例1】求证:

(1)

(2)

分析:本例与多项式乘法形式完全一样。

证:

注:(其中、为向量)

答:一般不成立。

?例2】已知,与 的夹角为,求.解:∵

注:与多项式求值一样,先化简,再代入求值.【例3】已知,且 与 不共线,当且仅当 为何值时,向量 与 互相垂直.

分析:师:两个向量垂直的充要条件是什么?

生:

解: 与 互相垂直的充要条件是

∴ 当且仅当 时,与 互相垂直.

3.演练反馈(投影)

(1)已知,为非零向量,与 互相垂直,与 互相垂直,求 与 的夹角.

(2),为非零向量,当 的模取最小值时,①求 的值;

②求证: 与 垂直.

(3)证明:直径所对的圆周角为直角. 参考答案:

(1)

(2)解答:①由

当 时 最小;

②∵

∴ 与 垂直.(3)如图所示,设,(其中 为圆心,为直径,为圆周上任一点)

∵,∴

即 圆周角

4.总结提炼

(l)

(2)向量运算不能照搬实数运算律,如结合律数量积运算就不成立.

(3)要学会把几何元素向量化,这是用向量法证几何问题的先决条件.

(4)对向量式不能随便约分,因为没有这条运算律. 五、板书设计 课题:

1.数量积性质 2.数量积运算律 例题 1 2 3 演练反馈 总结提炼