运算定律教案5篇

时间:2024-04-26 作者:lcbkmm

准备好教案可以让我们更好地规划课堂的评估和反馈,促进学生的学习动力和自我提升,优秀的教案设计能够帮助教师更好地引导学生积极参与课堂学习,下面是路路文书网小编为您分享的运算定律教案5篇,感谢您的参阅。

运算定律教案5篇

运算定律教案篇1

教学目标

知识与技能:通过情景创设,在解决实际问题的过程中充分调用学生已有的知识经验,进行知识迁移。学生在老师的引导下探究和归纳乘法交换律、结合律,理解乘法交换律、结合律的作用,了解运用运算定律可以进行一些简便运算。

过程与方法:鼓励学生大胆猜想,并从中感悟科学验证的方法。感受数学与现实生活的联系,能用所学知识解决简单的实际问题。培养根据具体情况,选择适当算法的意识与能力,发展思维的灵活性。

情感、态度和价值观:通过教学情景的创设和欣赏自然景色的美,向学生渗透环保教育。

教学重难点

教学重点

探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。

教学难点

乘法分配律的应用。

教学工具

多媒体课件

教学过程

一、复习导入

二、学习乘法交换律和乘法结合律

1、学习例5。

(1)出示例5

(2)学生在练习本上独立解决问题。

(3)引导学生对解决的问题进行汇报。

4×25=100(人)

25×4=100(人)

两个算式有什么特点?

你还能举出其他这样的例子吗?

教师根据学生的举例进行板书。

你们能给乘法的这种规律起个名字吗?

板书:交换两个因数的位置,积不变。这叫做乘法交换律。

能试着用字母表示吗?

学生汇报字母表示:a×b=b×a

2、学习例6。

(1)出示例6

(2)学生在练习本上独立解决问题。

教师巡视,适时指导。

(25×5)×2 25×(5×2)

=125×2 =10×25

=250(桶) =250(桶)

(3)引导学生对解决的问题进行汇报。

两个算式有什么特点?

你还能举出其他这样的例子吗?

教师根据学生的举例进行板书。

你们能给乘法的这种规律起个名字吗?

板书:先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。

能试着用字母表示吗?

学生汇报字母表示:(a×b) ×c=a× (b×c)

(4)完成例6下面做一做的第一题。

3、学习例7。

(1)出示例7。

(2)学生在练习本上独立解决问题。

教师巡视,适时指导。

(3)引导学生对解决的问题进行汇报。

两个算式有什么特点?

你还能举出其他这样的例子吗?

教师根据学生的举例进行板书。

你们能给乘法的这种规律起个名字吗?

板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

能试着用字母表示吗?

学生汇报字母表示:(a+b)×c=a×c+b×c

a×(b+c)=a×b+a×c

(4)完成例7下面做一做的第一题。

3、学习例8。

(1)出示例8。

(2)收集信息,明确条件问题

(3)学生独立思考,尝试解决问题

(4)读懂过程,感悟不同方法

课后小结

今天你有什么收获?

运算定律教案篇2

备教材内容

1.本节课学习的`是教材79页的内容。

2.本节课教材分两个层次进行编排:第一个层次:呈现几组有特点的算式,让学生通过观察、计算发现每组算式的特点,进而引发学生的数学思考,并通过举例验证探索得到的规律,从而明确:整数加法运算定律对于小数加法同样适用;第二个层次:整数加法运算定律在小数加法中的运用,例4直接呈现了1个有特点的小数连续相加的算式,并呈现了不同的计算方法,通过两种计算方法的比较,使学生体会到小数计算中应用加法运算定律可使计算简便,从而使学生学会根据数据特点自觉应用运算定律进行简算。

3.小数的简便算法是在学生学习了整数的运算定律和小数加减混合运算的基础上学习的。对于提高学生的计算能力、加强学生计算的正确性、熟练性、灵活性有着重要的作用,同时本节课也拓展了加法运算定律的使用范围。

备已学知识

知识要点

加法交换律

a+b=b+a

加法结合律

(a+b)+c=a+(b+c)

小数加减混合运算的运算顺序

没有括号的,按从左到右的顺序依次计算;有括号的,要先算括号里面的。

备教学目标

知识与技能

1.理解整数的运算定律在小数运算中同样适用。

2.能根据数据的特点正确运用运算定律进行简便计算。

过程与方法

1.经历观察、猜测、验证等数学活动,发展学生迁移类推的能力。

2.体会解决问题策略的多样性,增强优化意识。

情感、态度与价值观

1.让学生感受解题策略的多样性和灵活性。

2.根据具体情况采用灵活的方法解决问题。

备重点难点

重点:理解整数的运算定律在小数运算中同样适用。

难点:能运用整数加法的运算定律和减法的运算性质灵活地进行简便运算。

备知识讲解

知识点一 整数加法运算定律推广到小数

知识回顾 整数加法运算定律即加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)。

问题导入 下面每组算式两边的结果相等吗?你有什么发现?(教材79页)

3.2+0.5○0.5+3.2

(4.7+2.6)+7.4○4.7+(2.6+7.4)

过程讲解

1.观察算式,发现特点

2.计算比较,发现规律

3.2+0.5

0.5+3.2

(4.7+2.6)+7.4

4.7+(2.6+7.4)

发现:(1)在小数加法中,交换加数的位置,和不变。符合加法交换律。(2)三个小数相加,先把前两个小数相加或者先把后两个小数相加,和不变。符合加法结合律。

3.举例验证,明确规律

7.3+9.2=9.2+7.3

(4.9+5.25)+1.75=4.9+(5.25+1.75)

得出结论:在小数加法中,加法交换律和加法结合律依然成立。

归纳总结

整数加法的交换律、结合律对小数加法同样适用。

知识点二 加法运算定律在小数运算中的应用

问题导入 计算0.6+7.91+3.4+0.09。(教材79页例4)

方法讲解

1.方法??

(1)算法分析。

按照四则混合运算的运算顺序进行计算。因为是同级运算,所以按照从左到右的顺序进行计算。

(2)计算过程。

0.6+7.91+3.4+0.09

=8.51+3.4+0.09

=11.91+0.09

=12

2.方法二

(1)算法分析。

运用加法交换律和加法结合律计算。观察4个加数,发现0.6和3.4、7.91和0.09结合到一起分别能凑成整数,因此交换7.91和3.4的位置,再应用加法结合律计算比较简便。

(2)计算过程。

0.6+7.91+3.4+0.09

=(0.6+3.4)+(7.91+0.09)

=4+8

=12

归纳总结

整数运算定律在小数运算中同样适用。因此,在小数四则混合运算的过程中,要仔细观察每个数的特点,注意数与数之间的关系及每个数前面的运算符号,恰当地运用加法交换律和加法结合律进行简便运算。

拓展提高

在小数连减运算中,减法的运算性质依然成立。如:8.96-3.37-2.63=8.96-(3.37+2.63)。

知识巧记

小数运算莫着急,数的特点看仔细。

要想计算变简便,各个数据要看全。

合理使用运算律,计算简单又快捷。

备易错易混

误区一 计算5.84+4.16-5.84+4.16。

5.84+4.16-5.84+4.16

=(5.84+4.16)-(5.84+4.16)

=10-10

=0

错解分析 此题错在审题不认真,只看每个数的特点,却忽略了数与数之间的关系及每个数前面的运算符号。

错解改正 5.84+4.16-5.84+4.16

=(5.84-5.84)+(4.16+4.16)

=0+8.32

=8.32

温馨提示

小数加减混合运算中,要想交换数的位置,一定要连同数前面的运算符号一同交换。

误区二 计算15.46-5.7+4.3。

15.46-5.7+4.3

=15.46-(5.7+4.3)

=15.46-10

=5.46

错解分析 此题错在没有依据运算定律或运算性质而盲目简算。如果此题是连减运算,那么可以根据减法的运算性质把两个减数相加,而此题是加减混合运算,所以不能盲目简算。

错解改正

15.46-5.7+4.3

=9.76+4.3

=14.06

温馨提示

只有运用运算定律或运算性质才能改变运算顺序,否则只能按四则运算的顺序依次计算。

运算定律教案篇3

教学目标

1、通过尝试解决实际问题,观察,比较发现并概括加法交换律。

2、初步学习用加法运算定律进行简便计算,并用来解决实际问题。

3、提高观察、概括能力和语言表达能力。

教学重难点

初步学习用加法运算定律进行简便计算,并用来解决实际问题。

教学工具

课件

教学过程

(一)谈话导入,

孩子们你们知道我们班上有多少小女孩?多少小男孩?那么我们班上一共有多少个孩子?

学生列式,师板书

(二)呈现事实,形成问题

1、出示准备题:

(1)27+73(2)37+58

73+27 58+37

2、学生计算得数。

3、请学生观察两组算式,说说有什么发现?

投影书上的主题图,

你搜集到了什么信息?

今天李叔叔一共骑了多少米?根据学生回答板书:40+56=96千米

56+40=96千米

和前面的两个例子比较你发现了什么?、

4根据学生回答板书:猜想——两个数相加,交换加数的位置它们的和不变。

既然和不变,每组算式可以用什么符号连接呢?(=)

5、问题:这个猜想正确吗?

(三)验证猜想,形成结论

1、验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。

让学生举例,

如35+20=20+35等等让学生多说

同桌互说

学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。

2、同学自己设计一组式题验证,小组交流结果,汇报结论。

3、这种猜想看起来比较可靠,但我们不可能把符合猜想的例子

全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。

例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)

(1)口答列式:476+518518+476

为什么这样列式?

(2)判断:得数会相同吗?

(3)计算结果,得出结论:476+518=518+476

在加法中,交换加数的位置,和不变。

4、揭题:这就是我们今天要学习的“加法交换律”(板书)

5这种规律在其他运算中有吗?学生质疑,验证。在这个环节中有出现个别代表一般的给予举例纠正。

学生自学书本、质疑。

6、小结:

(1)什么是加法交换律?

用字母a、b表示加法交换律。板书:a+b=b+a

(四)应用成果,巩固新知

1、学习加法交换律的最终目的是用。

问:验算加法,我们用什么方法?根据什么?

2、“练一练”1,先计算出得数,再用加法交换律进行验算。

问:验算方法运用什么运算定律?

3、“练一练”

(1)分组完成。(每组一生板演,比赛形式进行)

(2)指名说出验算方法和根据。

4、放录音、做游戏——“我该在什么位置”

(1)将卡片470、880、1013、214、58、58发给六个同学。

(2)伴随音乐,寻找自己的位置,并贴上。

(3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了加法交换律。

(五)反思过程,学会学习

1、这节课我们发现了什么?是怎样获得证明的?(举例证明一意义论证)2、这一规律已有哪些运用?

3、质疑:满足“和不变”这一要求,有没有其他可能?

课后习题

完成课后练习题。

运算定律教案篇4

教学目标

1.通过教学使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式.

2.理解用字母表示数的意义.

3.知道一个数的平方的含义及读写法,学会在含有字母的式子里简写和略写乘号.

4.使学生学会应用字母公式求值.

教学重点

用字母表示运算定律和公式;根据字母公式求值.

教学难点

理解一个数的平方的含义,乘号的简写和略写.

教学过程

一、铺垫孕伏

(一)在下面的□里填上适当的数,并说明根据什么.

18+34=34+□

(35+55)+45=357+(□+□)

35×□=59×□

(1.2×2.5)×4=1.2×(□×□)

(4+8)×□=□×3.5+□×□

二、探究新知

(一)教学用字母表示运算定律.

1.学生叙述各运算定律的内容,并用字母公式表示出来.

教师板书

(1)加法交换律:

(2)加法结合律:

(3)乘法交换律:

(4)乘法结合律:

(5)乘法分配律:

2.观察比较:用字母表示运算定律比用文字叙述有哪些优点?

优点:用字母表示运算定律比用文字叙述运算定律更简明易记,也便于应用.

(二)教学用字母表示计算公式.

1.教学用字母表示图形面积公式(出示图片:图形面积公式)

(1)表示正方形的面积,表示正方形的边长.

(2)表示平行四边的面积,、分别表示平行四边形的底和高.

(3)表示三角形的面积,、分别表示三角形的底和高.

(4)表示梯形的`面积、、分别表示梯形的下底和高.

2.教学一个数的平方的含义及正方形周长的书写格式.

(1)读出下面各式,并说明表示的意义.

(2)把下面各式写成一个数的平方的形式.

5×5

(3)省略乘号,写出下面各式.

(4)根据运算定律在□填上适当的字母或数.

(□+□)+□

□·(□·□)

(5)如果用表示长方形的长,表示宽,那么

这个长方形的面积_____________________,

这个长方形的周长_____________________.

教师小节:在含有字母的式子里,乘号可以省略,但加号、减号、除号都不能省略,如:

不能写成;在两个数相乘的时候,乘号不能省略不写,可以改为“·”,但容易与小数点混淆,所以一般仍记作“×”.

3.教学例1.

例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

教师说明:在我们计算一个图形的面积或周长时,实际上是把数值代入有关的公式,算

出的结果就是它的面积或周长.

(1)说出梯形的面积公式.

(2)说出梯形面积公式中每一字母表示的意义.

(3)说出字母所代表的数值.

(4)学生尝试解答.

教师强调:在利用公式进行计算时,计算的结果不必写出单位名称,只在答题时注明就行了.

(5)练习:一个长方形的长是8.4厘米,宽是4.6厘米,它的周长是多少厘米?

三、课堂小结

今天这节课学习了什么知识?

四、课后作业

(一)已知一个三角形的底是3.8分米,高是1.5分米.求这个三角形的面积.

(二)先写出下面图形的周长和面积的计算公式,再把数值代入公式计算.

1.一个长方形,长7.2厘米,宽1.8厘米.

2.一个正方形,边长24毫米.

五、板书设计

用字母表示运算定律和计算公式

运算定律

计算公式

可以写成

读作:的平方

表示:两个相乘

例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

=(3.5+5.5)×4÷2

=9×4÷2

=18

答:梯形的面积是18平方厘米.

探究活动

找规律

活动目的

1.能正确用含有字母的式子表示数量.

2.培养学生的抽象思维能力和概括能力.

活动题目

仔细观察,发现规律,得出结论,然后填空.

35=3×10+5702=7×100+0×10+2

72=7×10+2123=1×100+2×10+3

16=1×10+6564=5×100+6×10+4

…………

1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是().

2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是().

数学教案-用字母表示运算定律和公式

活动过程

1.学生分小组讨论.

2.汇报思考过程和答案.

3.仿照题目类型,每个小组自编一组练习,相互交换解答.

参考答案

1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是(10a+b).

2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是(100a+10b+c).

运算定律教案篇5

教学目标

知识技能

1、初步体会整数的运算定律在小数中仍然适用。

2、能运用乘法运算定律使小数计算简便。

过程与方法

1、让学生经历自主探究的过程,培养学生的观察比较的能力,培养合理运用所学的知识解决新问题的能力。

2、发展学生思维的`灵活性,培养学生感悟、运用知识的能力。

3、通过复习旧知识、自学教材中三个关系式,观察与分析,将旧知识推移到新知识里,培养学生迁移类推的能力。

情感、态度与价值观

1、引导学生积极参与探索、思考的过程。

2、培养学生独立思考、认真审题灵活运用运算定律简算的习惯和能力。

教学重难点

教学重点:

1、理解整数乘法的运算定律在小数乘法中同样适用。

2、运用运算定律进行小数乘法的简便计算。

教学难点:学生通过观察能选择合理的方法进行小数乘法的简便计算。

教学工具

ppt课件

教学过程

一、创设情境

师:同学们,我们已经学习了整数乘法的一些运算定律,哪位同学说一说整数乘法的运算定律有哪些?

生:乘法交换律、乘法结合律和乘法分配律。

师:同学们,你们能用字母来表示出这三个定律吗?

师:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用?今天这节课我们就来研究这个问题。

二、探究新知

1、猜测

0.7×1.2○1.2×0.7

(0.8×0.5)×0.4○0.8×(0.5×0.4)

(2.4+3.6)×0.5○2.4×0.5+3.6×0.5

师:猜一猜,每一组算式它们有怎样的关系?

2、验证

通过计算学生发现每一组算式都相等。

师:仔细观察每一组算式,它们有什么特点?

生:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。

3、举例验证

师:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?

生:不能。

师:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。同学们你们能仿照第一组的例子,也写出三种这样的算式,并验证是否相等。

(学生动手写,让学生进行汇报,尽量让多个学生进行汇报,这样例子多了,结论更有说服力。)

学生汇报。(教师有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。)

师:小组同学相互交流,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)

4、应用

出示例7

师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。

0.25×4.78×4 0.65×202

(1)让学生独立思考,然后尝试写在练习本上。

(2)指明学生板演。

(3)让学生说一说每一题运用了乘法的什么运算定律?

师:第①题,为什么先让0.25和4相乘?

生:因为0.25和4相乘,正好得1,计算起来比较的简便。(使学生体会理解算前先观察题中有没有特殊的数,如果两个数的积是1、10、100、1000等等,运用运算定律先算,这样使计算简便。)

师:你认为第②小题,解题的关键是什么?(使学生体会到先把特殊的数进行分解,然后才能进行简算。)

生:把202分成200+2,用乘法分配律完成。

师:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点。)

(4)交流评价。

三、方法应用

师:刚才,我们运用了乘法的运算定律,使小数乘法简便了许多,下面请同学们再来看看下面这道题,怎样算合理简便,你能想出几种算法

4.8×1.25

(1)让学生独立做。

(2)小组内进行交流。

(3)汇报(体现算法多样化)

(4)评价总结。

四、巩固练习:完成做一做题目。

五、梳理知识,总结升华

谈话:这节课你都获得了哪些知识?在本节课中你最大的收获是什么?

六、布置作业:练习三第4.5题。