初中数学数与式的教案通用5篇

时间:2024-08-29 作者:lcbkmm

教案中应当包含与学生互动的活动,促进他们的积极思考,通过制定教案,教师能够更好地把握学生的学习进度与理解情况,路路文书网小编今天就为您带来了初中数学数与式的教案通用5篇,相信一定会对你有所帮助。

初中数学数与式的教案通用5篇

初中数学数与式的教案篇1

教学目标

1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3, 体验分类是数学上的常用处理问题的方法。

教学难点 正确理解分类的标准和按照一定的标准进行分类

知识重点 正确理解有理数的概念

教学过程(师生活动) 设计理念

探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的`吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数 这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业

1, 必做题:教科书第18页习题1.2第1题

2, 教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初中数学数与式的教案篇2

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标:

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的`观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程:

一、复习引入,输入并贮存信息:

1.提问:如图,在rt△abc中,∠c=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠a、∠b有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点c,测得同顶的仰角为30°,向山沿直线 前进20为到d处,再测山顶a的仰角为60°,求山高ab。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求ab可以解rt△abd和

rt△abc,但两三角形中都不具备直接条件,但由于∠adb=2∠c,很容易发现ad=cd=20米,故可以解rt△abd,求得ab。

⑶解题过程,学生练习。

⑷思考:假如∠adb=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点c,测得山顶a的仰角为30°,向山沿直线前进20米到d处,再测山顶a的仰角为45°,求山高ab。

分析:

⑴在rt△abc和rt△abd中,都没有两个已知元素,故不能直接解一个三角形来求出ab。

⑵考虑到ab是两直角三角形的直角边,而cd是两直角三角形的直角边,而cd均不是两个直角三角形的直角边,但cd=bc=bd,启以学生设ab=x,通过 列方程来解,然后板书解题过程。

解:设山高ab=x米

在rt△adb中,∠b=90°∠adb=45°

∵bd=ab=x(米)

在rt△abc中,tgc=ab/bc

∴bc=ab/tgc=√3(米)

∵cd=bc-bd

∴√3x-x=20 解得 x=(10√3+10)米

答:山高ab是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及cd,例1中 ∠2=2∠1 求ab,则需解rt△abd例2中∠2≠2∠1求ab,则利用cd=bc-bd,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔cd为m米,从地上一点测得塔顶c的仰角为∝,塔底d的仰角为β,求山高bd。

练习2:如图,海岸上有a、b两点相距120米,由a、b两点观测海上一保轮船c,得∠cab=60°∠cba=75°,求轮船c到海岸ab的距离。

练习3:在塔pq的正西方向a点测得顶端p的

仰角为30°,在塔的正南方向b点处,测得顶端p的仰角为45°且ab=60米,求塔高pq。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的rt△abd翻折180°,即可得图6;将基本图形4中rt△abd绕ab旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是ab=ab;练习2的等量关系是ad+bd=ab;练习3的等量关系是aq2+bq2=ab2

五、作业布置,反馈信息

?几何》第三册p57第10题,p58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

初中数学数与式的教案篇3

一元一次不等式组

教学目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的`能力;

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学难点

正确分析实际问题中的不等关系,列出不等式组。

知识重点

建立不等式组解实际问题的数学模型。

探究实际问题

出示教科书第145页例2(略)

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

归纳小结

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

初中数学数与式的教案篇4

教学目的

1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能了解实数绝对值的意义。

3、使学生能了解数轴上的点具有一一对应关系。

4、由实数的分类,渗透数学分类的思想。

5、由实数与数轴的一一对应,渗透数形结合的思想。

教学分析

重点:无理数及实数的概念。

难点:有理数与无理数的区别,点与数的一一对应。

教学过程

一、复习

1、什么叫有理数?

2、有理数可以如何分类?

(按定义分与按大小分。)

二、新授

1、无理数定义:无限不循环小数叫做无理数。

判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

2、实数的定义:有理数与无理数统称为实数。

3、按课本中列表,将各数间的联系介绍一下。

除了按定义还能按大小写出列表。

4、实数的相反数:

5、实数的绝对值:

6、实数的运算

讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

例2,判断题:

(1)任何实数的偶次幂是正实数。( )

(2)在实数范围内,若| x|=|y|则x=y。( )

(3)0是最小的实数。( )

(4)0是绝对值最小的实数。( )

解:略

三、练习

p148 练习:3、4、5、6。

四、小结

1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

五、作业

1、p150 习题A:3。

2、基础训练:同步练习1。

初中数学数与式的教案篇5

教学目标:

1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。

(2)能熟练进行有理数的减法法则。

2、过程与方法

通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。

重点、难点

1、重点:有理数减法法则及其应用。

2、难点:有理数减法法则的应用符号的改变。

教学过程:

一、创设情景,导入新课

1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)=

—3+(+5)=

2、-(-2)= -[-(+23)]=,+[-(-2)]=

3、20xx的某天,北京市的最高气温是-20c,最低气温是-100c,这天北京市的`温差是多少?

导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)

二、合作交流,解读探究

1(-2)-(-10)=8=(-2)+8

2:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?

3、通过以上列式,你能发现减法运算与加法运算的关系吗?

(学生分组讨论,大胆发言,总结有理数的减法法则)

减去一个数等于加上这个数的相反数

教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?

三、应用迁移,巩固提高

1、p.24例1 计算:

(1) 0-(-3.18)(2)(-10)-(-6)(3)-

解:(1)0-(-3.18)=0+3.18=3.18

(2)(-10)-(-6)=(-10)+6=-4

(3)-=+=1

2、课内练习:p.241、2、3

3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。

四、总结反思

(1) 有理数减法法则:减去一个数,等于加上这个数的相反数。

(2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。

五、作业

p.27习题1.4a组1、2、5、6

备选题

填空:比2小-9的数是 。

а比а+2小 。

若а小于0,е是非负数,则2а-3е 0。