分数乘法一教案推荐7篇

时间:2024-08-29 作者:Fallinlove

教案的灵活性使教师能够根据课堂实际情况进行调整,确保教学效果,教案中应当包含与学生互动的活动,促进他们的积极思考,以下是路路文书网小编精心为您推荐的分数乘法一教案推荐7篇,供大家参考。

分数乘法一教案推荐7篇

分数乘法一教案篇1

教学目标 :

1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

教学重点:

掌握分数乘分数的计算方法,并能熟练计算。

教学难点:

理解分数乘分数的乘法意义及算理。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )

2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

?设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

二、合作探究(小组合作,解决问题)

出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

(一)探究几分之一乘几分之一的算理算法

1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的`整数乘分数的意义进行类推)

求一个数的几分之几,我们可以用乘法来计算。

2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

4. 进行交流反馈

重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。

5. 得出结果

根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?

6. 猜想计算方法

观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?

?设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】

(二)探究几分之几乘几分之几的算理算法

1. 尝试猜想

请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。

2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)

3. 验证反馈

(1)请几个采用不同验证方法的学生进行一一展示。

(预计方法:a. 画图(图形或线段);b. 转化成小数再进行计算;c. 利用分数的意义进行计算)

(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。

4. 得出结论

看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。

?设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】

三、展示交流(展示交流,调拨归纳)

简化计算过程

根据我们所得的结论,试着解决下面的问题

出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。

(1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?

(2)乌贼30分钟可以游多少千米?

1. 读题,独立列式并解答。

2. 反馈

(1)题(1)展示不同的计算过程:a、先计算再约分;b、先约分再计算。

(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。

(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。

3. 练习

例4做一做1。

?设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】

四、拓展总结(应用拓展,盘点收获)

1. 基础练习

(1)先看数再计算(练习一6、7两题)

反馈校对、纠错。

在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。

预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。

?设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】

(2)完成例3、例4做一做剩下的题

反馈校对、纠错。

在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。

2. 练习提升

在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?

○ ○ ○ ○

反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。

(1)题1、题3主要引导学生从分数乘法的意义来理解;

(2)题2、题4主要是对分数计算方法的巩固。

?设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】

3.拓展总结

这节课我们学习了什么?我们是怎样得出这些结论的?

没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。

?设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】

分数乘法一教案篇2

一、教学目标。

1、使学生理解分数乘整数的意义与整数乘法意义相同。

2、使学生掌握分数乘整数的计算方法,能正确进行计算,明白计算过程中能约分的要先约分的道理。

二、教学重点。

使学生理解分数乘整数的意义及计算方法。

三、教学难点。

总结分数乘整数的计算方法,理解分数乘整数算式的意义。

四、教学过程。

(一)设疑激趣,提出问题

1、把9+9+9+9+9改成乘法算式。

2、把o.2+0.2+o.2+o.2改成乘法算式。

3、(1)口答整数乘法的意义。

(2)求几个相同加数和的简便运算。

4、列式计算。

(1)5个12是多少?

12×5=

(2)12个1.5是多少?

1.5×12=

(3)3个是多少?

5、提出问题。

教师:求3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。

板书课题:分数乘法(一)。

(二)引导探索,解决问题。

1、分数与整数相乘的意义。

(1)出示题目。

1个占1张彩纸的,3个占这张彩纸的几分之几?

(2)探索交流。

①用图示表示。

1个图案占这张彩纸的。3个图案占这张彩张的。

②用加法计算。

③用乘法计算。

(3)引导发现。

教师:求几个相同的分数和,可以用乘法计算。分数与整数相乘的意义与整数乘法的意义相同。

2、分数与整数相乘的计算方法。

(1)涂一涂,算一算。呈现题目。

(2)引导观察算式和结果。教师:在中,你是怎么算出得数的?算式中的数字与得数的数字有什么关联?让学生认真观察算式数字,思考其中的关联,并和同学交流,说一说自己有什么发现。在这一基础上,师生共同探索其中的联系。

(3)总结计算方法。让学生用自己的语言表述分数与整数相乘的计算方法。

(4)试一试。

3、约分。

教师:再计算时你有什么体会?让学生回答问题,同学之间进行交流,通过算式比较。最后,使全班学生明白:

(1)在计算过程中,能约分的要先约分。

(2)最后结果应该是最简分数。

(三)巩固练习完成课文第3页“练一练”。

1、第1题。

完成后要将算式得数和涂的结果进行比较,并说明计算中的要点。

2、第2题。利用教材提供的素材,教育学生节约用水。

3、第3题。

(1)让学生独立完成。

(2)同学之间互相交流、校对,发现问题,及时反馈。

(3)说一说计算的步骤、方法:

①分子与整数相乘作分子,分母不变。

②能约分的要先约分,再计算。

4、第4题。

(1)学生独立完成。

(2)说一说,你是如何解决问题的。爸爸和小红一天分别吃多少→爸爸和小红一天共吃多少→爸爸和小红3天共吃多少。

5、第5题。让学生都算出结果,再观察各组题目的算式及结果,然后说一说有什么发现。

(四)作业选用课时作业。

分数乘法一教案篇3

教材分析

“分数乘法的意义”是学习和理解本节课内容的重要基础,因此在教学新知识前帮助学生找到知识的生长点很重要。

本节课的内容为简单的分数乘法一步应用题,掌握这部分知识才能为学习后面部分较复杂的分数乘法问题打下基础。

学情分析

本节课的内容是在学生已经掌握了分数乘法的计算方法和分数乘法的意义,具备了一定的分析题意中已知条件和找单位“1”等迁移知识的能力。学生认知的障碍点主要是理解分数问题中的单位“1”和问题的关系。

教学目标

1.理解掌握“求一个数的几分之几是多少”的分数问题的结构和解题方法。

2.渗透对应思想,发展学生分析推理能力和解决实际问题能力。

3.感受数学知识应用的广泛性。

教学重点和难点

1. 理解分数问题中的单位“1”和问题的关系。

2.理解“求一个数的几分之几是多少”的问题的解题思路和方法。

3.抓住知识关键,正确、灵活判断单位“1”。

教学过程

一、复习导入。

1.读信息,找出单位“1”:

2.列式计算。

思考:这两道题为什么用乘法计算?

板书课题

二、探索新知。

1.教学例1

(1)读题,理解题意。知道题中已知条件和所求问题,搞清楚

数量间的关系。

(2)画线段图分析思考,分析重点句。

(3)在分析题意的基础上,学生尝试解答。

板书: 2500× =1000(㎡)

(4)结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

三、巩固练习。

1.让学生理解题意,解决问题并说出解决的依据是什么。

2.(1)解决的问题是什么?怎样解决?

(2)比较这两道题的异同。

3.要求学生画线段图分析题意,再独立列式解答。

四、拓展提高。

先让学生独立思考,尝试列式解答,再交流想法。

小结:解决这类问题应从哪里入手分析?解题步骤是什么?

五、归纳总结。

今天有什么收获?

六、布置作业。

教科书第18页第2、3、9题。

分数乘法一教案篇4

一、梳理知识

1.怎样计算分数乘法

2.怎样的两个数互为倒数?怎样求一个数的倒数?

3.举例说说你能解决哪些用分数乘法计算的实际问题。

二、基础练习

1.写出下面各题的数量关系式

(1)绿花的朵数是黄花的 。

(2)黄花的朵数比绿花多。

(3)一件上衣降价出售。

(4)实际比计划增产。

2.计算

21×= ×26= ×= ×15×=

3.计算下面各题,再观察每组题目和结果,你有什么发现?

4. ×16 ○16× 13 ○×13 ×○ ×○×

5. 米=( )厘米 吨=( )千克 w w w .x k b 1.c o m

时=( )分 平方米=( )平方分米

6. ×( )=( )×0.5=( )×6=( )×=1

三、应用练习

1.(1)黄花有50朵,红花是黄花的,红花有多少朵?

(2)黄花有50朵,红花比黄花多,红花比黄花多多少朵?

(3)黄花有50朵,红花比黄花多,红花有多少朵?

2.(1)食堂有吨煤,用去一部分后还剩。还剩多少吨?

(2)食堂有吨煤,用去吨。还剩多少吨?

(3)食堂有吨煤,用去。还剩多少吨?

(4)食堂有吨煤,用去。还剩几分之几?

3.一辆卡车1千米耗油升,照这样计算,行千米耗油多少升?50千米呢?

4.一件毛衣原来销售56元,现降低销售,降价多少元?现价是多少元?

5.小军家有5口人,早上每人喝一瓶升的牛奶,一共喝了多少升?每升牛奶大约含钙克,一瓶牛奶含钙多少克?

6.六年级一班有48名同学,二班的人数是一班的.,三班的人数是二班的,六年级三班有多少人?

分数乘法一教案篇5

教学目标

1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、培养学生大胆猜测,勇于实践的思维品质。

教学重点:

会进行分数的混合运算,运用运算定律进行简便计算。

教学难点:

灵活运用运算定律进行简便计算。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1、运算定律。

我们在四年级时学习过乘法的运算定律,同学们还记得吗?

(学生回答,教师板书运算定律)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

2、这些运算定律有什么用处?你能举例说明吗?

2574 0.36101

(学生口述自己是怎样应用乘法的运算定律简算上面各题的`。)

二、自主探究(自主学习,探讨问题)

1、引入

同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。

(板书课题:整数乘法的运算定律能否推广到分数乘法)

2、推导运算定律是否适用于分数。

(1)学生发表对课题的见解。

(2)验证

有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)

3、教学例5.

(1)出示: ,学生小组合作独立解答。

4、教学例6.

(1)出示: ,学生小组合作独立计算。

(2)小组汇报学习成果,说一说你们组应用了什么运算定律。

5、小结

应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。

三、拓展总结(应用拓展,盘点收获)

1、完成练习三的第6题。

学生说一说应用了什么运算定律。

2、完成课本第10页的做一做题目。

其中第2题引导学生讨论解题思路,把87改成86+1应用乘法分配律计算比较简便。

3、总结

这节课你有什么收获?

分数乘法一教案篇6

教学目标

1.结合具体情境,探索并理解分数乘分数的意义;

2.探索并掌握分数乘分数的计算方法,并能正确计算;

3.能解决简单的分数与分数相乘的实际问题,体会数学与生活的密切联系。

养成教育训练点:

教学重点、难点

1.结合具体情境,探索并理解分数乘分数的意义;

2.探索并掌握分数乘分数的计算方法,并能正确计算;

教学准备:

1.每人准备一条约10厘米长的纸条;

2.每人准备5张长方形的纸。

教学过程:

一、探索分数乘分数的意义和计算方法。

1.先让学生读一读教科书第7页的一段话。再让学生拿出课前准备的一张纸条,按照例题所述剪一剪。

剪好后,师问:怎样列式求“剩下的部分占这张纸条的几分之几?”

并根据剪的结果写出得数。

1/2×1/2=14×1/2=1/8

学生列出算式后,师问:为什么用乘法计算?

引导学生理解,求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课学习的求一个数的几分之几的意义相同,所以用乘法计算。

折一折,涂一涂3/4×1/4-=?

让学生拿出课前准备好的一张长方形纸,按照教科书的要求折一折,涂一涂。

讨论:(1)请你说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?

(2)你能按照上面的方法先涂出1/4,再涂出1/4的3/4吗?

做一做:按照上面的方法折一折,想一想,并算出结果。

2/3×16×1/3

说一说:你能总结分数与分数相乘的计算方法吗?

小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。

想一想:此法与分数与整数相乘的方法有矛盾吗?

试一试:

1/4×2528×5/14

强调:能约分的要先约分。

二、课堂练习

1.计算练习。

教科书第8页“练一练”第2题。

学生计算后观察:分数相乘的积一定小于每一个乘数吗?

2.解决问题。

(1)教科书第8--9页“练一练”第3、4、5、6、7题。

学生完成后,说说解题思路。

(2)教科书第9页数学故事“唐僧分瓜”。

板书设计:

分数乘分数的运算法则:分子相乘,分母相乘,能约分的要约分。

分数乘法一教案篇7

教学内容:

教科书15页,例2及做一做 ,练习四8─10题。

教学目的:

(1)、会画线段图分析分数乘法两步应用题的数量关系。

(2)、掌握分数两步连乘应用题解答方法,并能正确解答。

(3)、进一步培养学生初步的逻辑思维能力。

教学重点:分析分数乘法两步应用题的数量关系。

教学难点:抓住知识关键,正确、灵活判断单位1。

教学过程:

(一)、复习引入:

1、先说说各式的意义,再口算出得数。

╳ ╳

2、指出下面含有分数的句子中,把谁看作单位1。

(1)乙数是甲数的 。(甲数)

(2)乙数的 相当于甲数。(乙数)

(3)大鸡只数的 等于小鸡的只数。(大鸡)

(4)大鸡的只数相当于小鸡的 。(小鸡)

(二)、探究新知:

1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

(1)审题:

全体默读,再指名读,说出已知条件和问题。

师生边讨论边画出线段图。

先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?

(根据:小华的钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)

然后画一条线段表示谁储蓄的钱数?画多长?根据什么?

(又根据:小新的钱数是小华的 ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。

小亮

18元

?元

?元

小华

小新

(2)分析数量关系:

引导学生从已知条件分析:根据小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的 ,又可以把谁看作单位1,求出谁的钱数?

也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?

(3)确定每一步的算法,列出算式。

怎么求小华的钱数?

根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。

板书:18╳ =15(元)

怎么求小华的钱数?

根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。

板书:15╳ =10(元)

把上面的分步算式列成综合算式:

板书:18╳ ╳ =10(元)

(4)检验写答:

答:小新储蓄了10元。

2、做一做。

学生独立画出线段图,教师巡视指导。

3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。

(三)、课堂练习:

独立完成练习四的第8、9、10题。

板书设计:

例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

小亮

18元

?元

?元

小华

小新

18╳ =15(元)

15╳ =10(元)

18╳ ╳ =10(元)

答:小新储蓄了10元。