大家在撰写教案时,建议进行同行评审以获得反馈,教案的多元化设计能够满足不同学生的学习需求和兴趣,以下是路路文书网小编精心为您推荐的分数除法2教案模板6篇,供大家参考。
分数除法2教案篇1
教学目标:
使学生进一步理解分数与除法的关系,学会根据分数与除法的关系,把低级单位的名数改写成高级单位的名数以及解答"求一个数是另一个数的几分之几"的应用题。
教学重点:
名数之间的互化。
教学难点:
名数之间的互化的实质理解。
教学课型:
新授课
教具准备:
课件
教学过程:
一,铺垫复习,导入新知
1,用分数表示下面各式的商。[课件1]
5÷6 14÷25 12÷12 18÷35
2,在括号里填上适当的数或字母。[课件2]
12÷35=( )/( ) ( )÷( )=4/7
( )÷( )=a/b 8÷( )=( )/9
( )÷17=7/( ) 1÷( )=( )/d
3,把5个饼分给9孩子吃,每个孩子分得多少个 [课件3]
4,小新家养鸡30只,养鸭10只。养的鸡是鸭的几倍
5,填空。[课件4]
30分米=( )米 180分=( )小时
二,变式类推,深化理解
1,教学p91 。例4: (1)3分米是几分之几米
(2)17分是几分之几时
思考:a,这两题与复习题有什么区别 有什么相同
b,第(1)题要把分米数改写成米数应该怎么办 怎样计算
板书: 3÷10=3/10(米)
c,第(2)小题是要将什么改写成什么 怎样求得
板书: 17÷60=17/60(时)
※ p91 。做一做
2,教学p92 。例5: 小新家养鹅7只,养鸭10只。养的鹅是鸭的几分之几
(1)提问:a,用谁作标准 该怎样计算
b,与复习题对比,有哪些不同点和相同点
(2)归纳。
求一个数是另一个数的几倍与求一个数是另一个数的'几分之几,都用除法计算,除数都作标准数,得到的商都表示两个数之间的关系,都不能写单位名称。
※ p92 。做一做
习前提问:说说用什么作标准数
三,加强练习,深化概念
1,p93 。4
要求说说题目的思路和单位之间的进率。
2,p93 。6
提问:这两个问题中的标准量相同吗 请说说标准量分别是什么
3,p93 。7
四,全课小结,抽象概括
1,本节课所学的两个内容分别是什么
2,你还有问题要问吗
五,家作。
p93 。5,8
分数除法2教案篇2
教学内容:
教材第29-30页的内容。
教学目标:
1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。
2.探索并掌握分数除以整数的计算方法,并能正确计算。
3.能够运用分数除以整数解决简单的实际问题。
教学重点:
分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。
教学难点:
运用分数除以整数解决简单的实际问题。
教具准备:
多媒体课件
预习提纲:
1.观察课本第29页的图,从中你能获得哪些数学信息呢?
2.根据这些数学信息你能提出哪些问题?
3.分析例题,写出等量关系,并试用方程解答。
4.想想还有别的`算法吗?
教学过程:
一、创设情境,引发探究
1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?
2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?
(1)打篮球的人数是踢足球的4/9.
(2)踢毽子的人数是踢足球的1/3.
(3)跳绳的人数是参加活动总人数的2/9.
……
二、提出问题,自主探究
1.根据这些数学信息你能提出哪些问题?
操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?
列出这题的等量关系,并解答。全班交流。
2.还能提出哪些数学问题,引出例题
跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?
这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?
你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。
解:设操场上有x人参加活动。
χ×2/9=6
χ×2/9÷2/9=6÷2/9
χ×=27
3.想一想,还有别的算法吗?怎么算?为什么?
6÷2/9=27(人)
三、巩固练习,实践探究
刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?
1.操场上打篮球的有4人。
(1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?
(2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?
(3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?
(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。
2.某月双休日 9天,是这个月总天数的3/10,这个月有多少天?
(板演过程中,着重分析学生可能存在的误解之处。)
3.根据以下方程,编出相应的应用题。
χ×1/5=30 χ×2/3=40
四、回顾反思,总结全课。
通过这节课的学习你有哪些收获?
分数除法2教案篇3
教学目标:
4、学习运用线段图帮助分析数量关系。
5、加强列方程的思维训练。
6、培养学生分析问题解决问题的能力。
教学过程:备注
活动一:复习与准备
1、根据题意列出方程。
(1)、六年一班有15人参加了合唱队,占全班人数的1/3,六年一班有多少人?
(2)、美术小组的人数比航模小组多1/4。美术小组的人数比航模小组多5人。航模小组有多少人?
活动二:出示例2
一、
1、审题。
2、看例题的插图,理解题目的意思,说说知道了什么,要求什么
3、分析题意,说说你对美术小组的人数比航模组多1/4这一条件的理解。
4、理解数量关系
二、
1、分析、解答
2、说说数量关系。
3、学生根据得到的数量关系列方程解答。
4、交流各自的解法。
小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。
活动三:
巩固联系:
1、41页7、8题
2、41页10题
板书设计
分数除法2教案篇4
说课内容:
九年义务教育六年制小学数学人教版第十册第65页。
教学地位:
分数与除法是在学生学习分数的产生和分数的意义基础上学习的。教材讲分数的产生时,学生认识到在整数计算中往往不能得到整数的结果,要用分数表示,初步涉及分数与除法的关系。学习分数的意义时,认识到把一个物体或一个整体平均分成若干份,蕴含着分数与除法的关系,但是没有明确点出分数与除法的关系。教材在学生理解了分数的意义之后,让学生学习分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数表示商,这样可以加深和扩展学生对分数意义的理解,同时也为学生进一步学习假分数以及假分数与整数、带分数的互化做好准备。
教学目标:
1、通过分数与除法的学习,渗透事物是互相联系的、变化的、发展的辩证的唯物主义的基本观点。
2、使学生通过观察与操作,探索分数与除法的关系,会用分数表示两个数相除的商。
3、使学生在自主探索、合作交流的过程中,进一步发展数感,培养观察、比较、分析、推理等能力。
教材分析:
首先,认真钻研教材正确把握教学内容,明确教学目标是正确选择教法的前提。把握教学内容一要全面、二要具体、三要恰当。所谓全面指从思想教育、能力、非智力的心理品质等全面考虑(见教学目标);所谓具体指在40分钟内实现知识领域,能力领域,情意领域的各项任务;所谓恰当,指教法的选择符合教材的内容要求,学生的知识水平,认识能力以及教学内容的阶段性,注意不随意拔高和降低教学要求。避免重点不突出,难点过分集中,以及贪多求快偏差,教师在选择教法前,要深刻地钻研教材,领会编者意图,合理组织教材内容。教师要从具体教材中选择本质的、区别于其他事物的特有属性,也就是了解概念的本质特征和这一概念所反映的对象的全体。例如,分数与除法的概念教学,要明确其本质特征,一是计算整数除法不能整除的时候,可以用分数表示除法的商。以1/3个为例,按照分数的意义,把一个蛋糕平均分成3份,其中的一份是一个的1/3,就是1/3个,还可以这样理解1/3个,表示把一个平均分成3份,每份是1/3米。二是分数与除法的关系可以用用文字表示,即被除数÷除数=被除数/除数,在分数中分母不能是零;还可以用字母表示a÷b=a/b(b≠0)。三是分数与除法的关系,表述为除法与分数的比较:被除数相当于分子,除号相当于分数线,除数相当于分母,商相当于分数值。
其次,选择教法必须符合小学生的年龄特点和认知规律。小学生形成概念必须经过思维的加工,逐步完成从具体形象到抽象化的过渡。由于学生知识和思维能力的局限,实现这一过渡需要有一定的阶段性和层次性。为此,要帮助学生形成分数与除法关系的概念拟分五个层次(一)复习旧知,引进新课;(二)启思讨论,探求新知;(三)实际操作,寻找规律;(四)比较分析,发现规律;(五)多层练评,反馈总结。
第三,选择教学必须考虑结合教学内容侧重培养学生某一方面的能力和智力,受到思想品德教育。“分数与除法”这节概念课要侧重引导学生对教学内容进行分析、综合、比较、抽象、概况,并运用所学知识进行简单的推理和判断。例如,在寻找规律,这一层次安排4个步骤:(1)分析题意列出算式(2)实际操作:让学生拿出同样大小的三个圆形纸片,把3个月饼看作单位“1”,把它平均分成4份,求一份是多少,你们能分吗?(3)展示分法:出示3种,有一种是把3个饼叠在一起,平均分成4份,取出一份,这一份是3个饼的几分之几?把3个1/4拼在一起看看拼成了一个饼的几分之几?(4)初步抽象:从图中可以看出:一个饼的3/4就是3个饼的1/4,3/4个饼表示什么意思?把3个饼平均分成4份表示这样1份的数;把一个饼平均分成4份,表示这样3份的数。这样,通过教学使学生既增长知识又长智慧,同时,结合教学内容渗透事物是相联系的辩证唯物主义的基本观点。
教学学法:
教学是师生的双边活动,现代教育理论重视课堂教学以学生为主体,重视学生学习方法的指导。叶圣陶先生说过:“教是为了用不着教”,为了“不教”,教师要充分调动学生的积极性和主动性,让学生参与数学概念形成的过程。初步掌握概念教学的基本程序:通常是引入概念,理解概念,巩固概念,应用概念,遵循学生建立和形成数学概念的基本规律:感知表象——建立概念——巩固概念——应用概念等基本环节,通过数学内容的学习逐渐掌握上述的“程序”与“规律”,以提高数学概念的自学能力。
在“分数与除法”的教学中,学法指导体现于(1)抓要点,促联系;(2)抓理解,促深化;(3)抓方法,寻策略;(4)抓整理,促记忆。在教学中,让学生参与概念的形成过程。在这个过程中,让学生对一组对象中的每个事物的个别属性进行了解,(例1、例2)对对象间的属性异同进行剖析,接着通过比较,采取异中求同的方法抽象出分数与除法的共同属性即分数与除法的关系式:a÷b=a/b(b≠0),同时引导学生探索分数与除法关系的外延,强调b≠0,弄清其道理;最后,引导学生将新概念与已有的相关的概念联系起来,并进行适当划分从中渗透比较、对应等数学思想,指导学生学习方法策略,进而构建新概念系统。如设计通过填表,让学生进一步了解分数与除法各部分间的联系与区别。
这样,帮助学生将所学感念纳入知识系统,形成良好稳定的认知结构。
分数除法2教案篇5
教学目标
1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1.铅笔的支数是钢笔的 倍.
2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔.
4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量关系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的'方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
分数除法2教案篇6
教学准备:
教学目标:
1、结合具体情境观察比较,理解分数与除法数的关系,会用分数来表示两数相除的商。
2、运用分数与除法数的关系,探索假分数与带分数的互化方法,初步解解假分数与带分数互化的算理,会正确进行互化。
基本教学过程:
一、创设情境,理解分数与除法的关系:
1、出示题目:
把1块蛋糕平均分给2个小朋友,每人可以得到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?
①引导学生列出除法算式,并结合分数的意义得出结果从而得到两个关系式:
1÷2=1/2
7÷3=7/3
二、自主探索:分数与除法的关系:
①引导学生观察比较这两组关系式:
你发现分数与除法有什么关系?与同学说一说
②学生汇报自己的.想法:
③师总结:分数与除法的关系式:
④生说一说关系式的意思:
⑤引导学生思考:分数的分母能不能是0?为什么?
⑥小组讨论:
⑦学生汇报:
⑧练一练:第36页第一题:
三、探索假分数与带分数的互化方法:
①增加几道整数与带分数互化的题:
小组讨论方法:
学生汇报方法:
②假分数和带分数互化的题:
怎样把7/3化成带分数?怎样把化成假分数?
分组讨论方法:
学生汇报方法:
四、拓展练习:
第37页第1、2、3、4、题
五、总结:
教学反思: